Меню Рубрики

Ручной подсчет общий анализ крови

В лейкоцитарной формуле определяют следующие виды лейкоцитов:

  • Нейтрофилы осуществляют защиту организма от инфекций. Наиболее часто количество нейтрофилов увеличивается при острых воспалительных, инфекционных заболеваниях, при некрозе тканей, интоксикациях.
  • Эозинофилы участвуют в развитии аллергических реакций. Их количество повышается чаще всего при аллергических состояниях и глистных инвазиях, реже — при опухолях и некоторых коллагенозах.
  • Базофилы участвуют в аллергических и воспалительных реакциях. Их количество возрастает при любых аллергических заболеваниях, некоторых болезнях крови, гипотиреозе и др.
  • Лимфоциты являются главными клетками иммунной системы, обеспечивающими адекватный иммунный ответ организма при попадании чужеродных агентов. Содержание лимфоцитов в крови возрастает при инфекционном мононуклеозе, многих других вирусных инфекциях, а также при заболеваниях лимфатической системы и крови.
  • Моноциты, клетки, обеспечивающие фагоцитоз, т.е. «пожирание» чужеродных микроорганизмов. Моноцитоз — повышение количества моноцитов — характерен для многих инфекций: туберкулеза, инфекционного мононуклеоза, сепсиса. Он встречается при заболеваниях крови, коллагенозах.
  • Плазмоциты, клетки лимфоидной ткани, продуцирующие иммуноглобулины. В норме в периферической крови отсутствуют, появляются там при вирусных инфекциях, плазмоцитоме, злокачественных опухолях, аутоиммунных заболеваниях.

Исследование по подсчету лейкоцитарной формулы в Лаборатории Гемотест проводится на автоматических гематологических анализаторах, в которых используется современная технология проточной цитофлуориметрии, кондуктометрии. Анализатор оценивает 10000 клеток в одном образце, определяя размеры, структурные, цитохимические и другие характеристики. После этого производится обязательная микроскопия окрашенного мазка крови, для определения морфологической характеристики лейкоцитарных клеток. При выявлении патологии в цитоплазме или ядре клеток, эта информация обязательно указывается в примечании к анализу. При микроскопии лейкоцитарной формулы используют окраску по Романовскому. При подсчете лейкоцитарной формулы используют лабораторные клавишные счетчики. В мазке подсчитывают 100 лейкоцитарных клеток с последующим выведением процентного, и абсолютного количества клеток, исходя из общего количества лейкоцитов.

Учитывая, что автоматический и ручной метод подсчета обладают разной погрешностью и воспроизводимостью, более диагностичным является автоматический подсчет клеток. При микроскопии происходит дифференцировка незрелых форм гранулоцитов на промиелоциты, миелоциты и метамиелоциты, указываются палочкоядерные нейтрофилы, плазматические клетки и, при обнаружении, отмечаются лимфоциты разной степени зрелости, значительная вариация размеров клеток лимфоидного ряда; полиморфизм ядер лимфоцитов; краевая базофилия и вакуолизация цитоплазмы лимфоцитов, неровный контур ядра и цитоплазмы. При визуальном дифференциальном подсчете имеются три главных источника ошибок: неравномерное распределение клеток в препарате, нераспознование клеток и наличии погрешности при повторных анализах. Данный метод сложно стандартизировать и устранить «человеческий» фактор аналитических ошибок. Преимуществом данного анализа является визуальная оценка морфологии клеток лейкоцитарного ряда врачом КЛД.

  • Диагностика гематологических, инфекционных, воспалительных заболеваний
  • Оценка тяжести состояния и эффективности проводимой терапии

Венозная кровь считается лучшим материалом для лабораторных исследований:

  • Для обеспечения качества результата исследования необходимо сдавать венозную кровь (если у ребенка нет особых показаний для взятия капиллярной крови). При взятии крови из пальца происходит деформация клеток крови, часть красных кровяных телец при этом разрушается, образуя в пробирках микроскопические сгустки. Проведение исследования при этом невозможно, в таком случае требуется повторное взятие биоматериала.
  • В венозной крови клетки крови не разрушаются, микроскопические сгустки образуются гораздо реже. Именно поэтому капиллярная кровь используется только у детей в единичных случаях.
  • Благодаря современным технологиям процедура взятия венозной крови безболезненна и безопасна даже для маленьких детей, так как используются полностью закрытые одноразовые вакуумные системы BD, исключающие инфицирование и соответствующие всем мировым стандартам.
  • Взятие крови из вены занимает несколько секунд.

Кровь следует сдавать в утренние часы натощак (или в дневные/вечерние часы, спустя 4-5 часов после последнего приема пищи). За 1-2 дня до исследования исключить из рациона продукты с высоким содержанием жиров.

Согласно ГОСТ Р 53079.4-2008 показания к взятию капиллярной крови возможны у новорожденных, у пациентов с очень мелкими или труднодоступными венами, при ожогах большой площади, выраженном ожирении пациента.

Биоматериал для исследования:

  • дети до 7 лет: венозная кровь/капиллярная кровь
  • дети старше 7 лет и взрослые: венозная кровь

Взятие капиллярной крови на исследования проводится только детям до 7 лет (по особым показаниям)!

источник

MCV (средний объем эритроцита)

MCH (среднее содержание гемоглобина в эритроците)

MCHC (средняя концентрация гемоглобина в эритроците)

RDV (ширина распределения эритроцитов по объему)

Гематологические анализаторы позволяют не только автоматизировать процесс подсчета клеток крови, улучшить качество и точность измерений, но и получить дополнительные, высокоинформативные характеристики клеток крови. Однако при анализе гемограммы следует учитывать возможные причины ложных результатов. Большинство автоматических счетчиков не определяют молодые формы лейкоцитов, нормобласты и ретикулоциты. Часто происходит завышение числа тромбоцитов при тромбоцитопениях за счет того, что анализатор определят микроциты и обломки эритроцитов как тромбоциты. Лейкоцитоз, гиперлипидемия могут завышать показатель гемоглобина и эритроцитов [9].

Эритроцит (обозначение RBS на анализаторе – red blood cells) подсчитывается в млн или х10.12/л. Это красные кровяные тельца, основная масса клеток крови.

Повышение содержания эритроцитов и гемоглобина в единице объема крови обозначается как эритроцитоз. Об эритроцитозе говорят при следующих показателях крови: эритроциты выше 5,7х10.12/л у мальчиков и 5,2 х10.12/л у девочек, гемоглобин выше 177 и 172 г/л и при гематокрите выше 52 и 48% соответственно [3]. Выделяют семейный доброкачественный эритроцитоз у лиц определенной национальности (Чувашия, Мордовия и др.). Абсолютным первичным эритроцитозом называется также истинная полицитемия или болезнь Вакеза – миелопролиферативное заболевание, относящееся к группе хронических лейкозов, у детей практически не встречается.

Термином “вторичные” эритроцитозы обозначается увеличение показателей красной крови, обусловленное реактивным раздражением эритропоэза. Устранение причины эритроцитоза обеспечивает его полную ликвидацию. Вторичные эритроцитозы делятся на относительные и абсолютные [2].

При относительных вторичных эритроцитозах уменьшен объем циркулирующей плазмы, и эритроцитоз является следствием относительного преобладания эритроцитов в единице объема крови, что имеет место в норме у новорожденных, при обезвоживании, сгущении крови у рабочих горячих цехов, при упорной рвоте, диарее, нарастании массивных отеков, ожогах.

В происхождении абсолютных вторичных эритроцитозов играет роль повышенная продукция эритропоэтина клетками юкстагломерулярного аппарата почек. Происходит мобилизация стволовых клеток в направлении эритропоэза. Стимулятором эритропоэза является гипоксия, которая отмечается при различных хронических заболеваниях легких, некоторых пороках сердца (тетрада Фалло, стеноз или атрезия легочной артерии), высотной болезни, отравлении анилиновыми красителями, окисью углерода, фосфором, кобальтом. Некоторые злокачественные опухоли приобретают способность вырабатывать эритропоэтины (гипернефроидный рак, доброкачественные опухоли почек, опухоли желез внутренней секреции), отсюда так называемые паранеопластические эритроцитозы [2].

При подсчете эритроцитов оцениваются:

1.Величина эритроцита: cредний диаметр эритроцита в норме 7,2-7,9 мкм. Отклонение от нормы – анизоцитоз:

· микроцитоз – менее 7,0 мкн, может быть при анемии Минковского-Шоффара, железодефицитной анемии (ЖДА), нарушении синтеза гемоглобина.

· макроцитоз и мегалобластоз – более 8 мкн, при витамин-дефицитных анемиях, миелодиспластических синдромах, может быть в норме у новорожденных.

2. Форма эритроцита – пойкилоцитоз, обозначается значком «+»

Варианты: акантоцит, мишеневидный кодоцит, серповидный эритроцит дрепаноцит, овалоцит, сфероцит и др. [1].

· гипохромное окрашивание при нарушениях синтеза гемоглобина – ЖДА, гемоглобинопатии, анемия хронического заболевания;

· диморфное окрашивание, то есть популяция эритроцитов состоит из 2 видов клеток – при миелодисплатическом синдроме (МДС);

· полихроматофильное окрашивание – в плазме эритроцита содержатся остатки нуклеотидов, вследствие чего добавляется синий цвет – при гемолитической болезни новорожденных (ГБН), при гиперрегенераторных состояниях без достаточной гемоглобинизации эритроцита.

4. В эритроцитах могут быть включения: базофильная зернистость, кольца Кэбота, тельца Гейнца, Хауэлла-Жолли – при токсическом воздействии (алкоголь, лекарства), при дизэритропоэзе [1].

– средний диаметр эритроцита: в норме 7,2-7,9 мкм;

– средний объем эритроцита (МСV на анализаторе – mean corpuscular volume): в норме 80-95 мкм3 (фл).

Формула расчета: MCV = НСТ (гематокрит)(%) х 1000 : RBS (в млн)

– средняя толщина эритроцита 1,9-2,1 мкм;

– ширина распределения эритроцитов по объему (RDW на анализаторе – red cell distribution width) в норме 11,5-14,5%, показатель анизоцитоза, пойкилоцитоза;

– графическое изображение распределения эритроцитов по величине – кривая Прайс-Джонса [5].

Насыщенность эритроцитов гемоглобином оценивается по следующим показателям:

– среднее содержание гемоглобина в эритроците (МСН на анализаторе – mean corpuscular hemoglobin) в норме 27-31 пг.

Формула расчета: МСН = HGB (гемоглобин)(г/л) : RBS (в млн)

– средняя концентрация гемоглобина в эритроците (МСНС на анализаторе – mean corpuscular haemoglobin concentration) в норме 32-37 г/дл.

Формула расчета: HGB (г/л) х 10 : НТС(%)

– ЦП (цветной показатель) в норме 0,82-1,1.

Формула расчета: ЦП = HGB (г/л) х 0,03 : RBS (в млн)

Гематокрит (НТС на анализаторе – hematocrit) в норме 36-48%, дает представление о соотношении количества эритроцитов к плазме, повышение при сгущении крови.

Для оценки регенераторной способности эритропоэза определяется количество ретикулоцитов (Rt) – это клетки созревания эритроцита после потери ядра оксифильным нормоцитом, стадия перед зрелым эритроцитом. Он не содержит ядра, в цитоплазме присутствуют фрагменты рибосом, митохондрий и других органелл. В норме Rt составляют 0,7-1,0%, или 24000-65000 в 1 мкл. В зависимости от уровня ретикулоцитов анемии могут быть гипо-, нормо- и гиперрегенераторными. У детей первых дней жизни в периферической крови в норме могут быть оксифильные нормоциты, повышено количество Rt, однако к концу первого месяца их количество уменьшается до стабильных величин.

Состояния, сопровождающиеся снижением гемоглобина и эритроцитов, называются анемиями. Степень анемии определяется по уровню Нв: от 110до 90 г/л – легкая степень, от 89 до 70 г/л – средняя степень, ниже 69 г/л – тяжелая степень анемии [6].

Для оценки характера анемии используются следующие показатели:

– осмотическая резистентность эритроцитов (ОРЭ).

Максимальная ОРЭ – эта та концентрация раствора NaCl, при которой разрушаются все эритроциты, минимальная ОРЭ – это та концентрация, при которой начинается разрушение первых эритроцитов.

В норме у детей и взрослых: min ОРЭ 0,44-0,48%, maх ОРЭ 0,28-0,36%,

у новорожденных: min ОРЭ 0,48-0,52%, maх ОРЭ 0,24-0,30%.

Снижение ОРЭ происходит при врожденных и приобретенных анемиях, когда разрушение эритроцитов происходит при более высоких концентрациях раствора NaCl [6].

– проба Кумбса – иммунологическая реакция, отражающая наличие в крови антител против эритроцитов. Прямая проба Кумбса выявляет антитела, фиксированные на эритроцитах – положительная при аутоиммунной гемолитической анемии (АИГА), непрямая проба Кумбса выявляет антиэритроцитарные антитела, свободно циркулирующие в плазме.

– показатели, характеризующие обмен железа в организме: уровень сывороточного железа, общая железо связывающая способность (ОЖСС), насыщение трансферрина железом, уровень сывороточного трансферрина и ферритина [1].

Гемоглобин (HGB на анализаторе – hemoglobin), в г/л- основной компонент эритроцитов. Он относится к хромопротеинам и имеет в своем составе железосодержащую группу (гем) и белок (глобин).

Гем – комплексное соединение железа и протопорфирина IХ. Одна из связей железа используется для соединения с глобином, другая – с кислородом. Гем одинаков для всех видов гемоглобина животных и человека.

Глобин – тетрамер, состоящий из двух пар полипептидных цепей, различие аминокислотного состава которых определяет гетерогенность молекулы гемоглобина человека. Основной компонент гемоглобина человека – НbA (95-98% гемоглобина) – состоит из 2a- и 2b-цепей, другие виды нормального гемоглобина – HbA2 (2-2,5%) и HbF (0,1-2%) имеют общую с HbA a-пептидную цепь, но отличаются структурой второй полипептидной цепи. В целом молекула гемоглобина содержит 574 аминокислоты. Каждая полипептидная цепь глобина соединена с гемом (на 1 глобин приходится 4 гема). У плода функционирует Нв F, у новорожденного в крови 80% НвF и 20% НвА, ко 2-3 месяцу жизни до 95% – НвА [6].

источник

Клинический анализ крови означает подсчет количества клеток в образце венозной крови. Капиллярная кровь не является рекомендуемой средой исследования для подсчета клеток, однако исследование гемограммы часто выполняют из образца капиллярной крови в отделениях интенсивной терапии.

Определение лейкоцитарной формулы, исследование среднего размера эритроцитов, тромбоцитов, определение количества предшественников эритроцитов (ретикулоцитов) и степени их зрелости, оценка скорости оседания эритроцитов и т.д., все это входит в понятие «клинический анализ крови».

Клинический анализ крови выполняется как первое скрининговое исследование при обращении и жалобах пациента на недомогание. Может быть выполнен сокращенный клинический анализ крови, так называемая «тройка» – подсчет количества эритроцитов, лейкоцитов и определение скорости оседания эритроцитов (СОЭ). Сокращенный клинический анализ крови малоинформативен, т.к. может охарактеризовать только выраженные патологические процессы.

Более целесообразно из того же объема образца крови выполнить развернутую гемограмму: подсчет количества эритроцитов с оценкой их среднего размера (MCV), подсчет общего количества лейкоцитов и оценку лейкоцитарной формулы (подсчет нейтрофилов, базофилов, эозинофилов, моноцитов, лимфоцитов), подсчет количества тромбоцитов и оценку среднего размера тромбоцита (MPV), ретикулоцитов и их среднего размера (MRV), степени зрелости ретикулоцитов (IRF).

Многочисленные характеристики клеток в настоящее время могут быть получены в автоматическом режиме в течение 3-5 минут после взятия крови. На основании развернутого исследования гемограммы может быть сделано не только заключение о наличии воспалительной реакции, анемии, но и характере других патологических процессов, возможной перенесенной или продолжающейся кровопотере, дефиците не только железа, но и витамина В12, фолиевой кислоты.

  • Скрининговое обследование при профилактическом осмотре, диспансеризации;
  • первичное обследование при госпитализации;
  • диагностика анемий;
  • диагностика болезней системы кроветворения;
  • инфекционные заболевания;
  • воспалительные процессы;
  • гемато-онкологические заболевания;
  • контроль эффективности терапии.

Метод исследования зависит от требуемых параметров гемограммы.

В ручном режиме, из образца крови (3–5 мл) часть отбирается в капилляр для определения СОЭ, часть образца крови используется для определения гемоглобина, капля крови – для приготовления мазка и дальнейшего подсчета лейкоцитарной формулы. Отдельное количество крови требуется для приготовления мазка и подсчета тромбоцитов, а также часть образца крови необходима для исследования количества эритроцитов и отдельно – ретикулоцитов. В ручном режиме, при необходимости окраски и визуальной оценки мазка, результат развернутой гемограммы пациента в многокоечном стационаре, может быть получен в конце рабочего дня или позднее.

В условиях автоматизированного подсчета клеток и оценки различных популяций требуется от 150 до 300 мкл крови и 100 мкл для определения СОЭ. Исследование в автоматическом режиме основано на импедансном методе Культера (1956), в основе которого лежит принцип замыкания электрической цепи каждой клеткой, последовательно проходящей через апертуру пробоотборника. В последующем метод автоматизированного подсчета получил ряд усовершенствований, в современных анализаторах каждая клетка оценивается по нескольким параметрам: проводимости, светорассеиванию, размеру, наличию на поверхности CD-маркеров, соответственно, принадлежности к различным популяциям. Количество параметров определяется моделью прибора.

Исследование в автоматическом режиме позволяет выявить патологические образцы, которые должны быть пересмотрены визуально специалистом лабораторной диагностики. Визуальный контроль гемограммы предполагает приготовления мазка крови, слайда, что может быть выполнено из капли крови уже взятого образца как в ручном, так и автоматическом режиме. Автоматизированное приготовление мазка крови предпочтительно, т.к. происходит равномерное распределение капли крови и стандартизированное окрашивание. Визуальная микроскопия мазка проводится в пяти полях зрения.

Исследование крови в автоматическом режиме занимает 3–5 минут, если не требуется дополнительное приготовление мазка и исследование СОЭ.

Читайте также:  Кровь на анализы при профосмотре

Клинический анализ крови выполняется из венозной крови, стабилизированной калиевой солью ЭДТА, если не указано иначе в инструкции к анализатору. Взятие крови выполняется натощак. Образец крови должен быть немедленно после взятия перемешан 9 раз осторожным переворачиванием, следует избегать образования пены и резкого встряхивания. До исследования образец крови может храниться при комнатной температуре (23–24 °С) в течение 24 часов в штативе, в вертикальном положении, в удаленном от света месте.

При использовании образца капиллярной крови для клинического анализа необходимо получить свободнотекущие капли капиллярной крови из предварительно прогретой области прокола. Сбор капиллярной крови без сдавливания пальца обеспечивает сохранность клеток. Надавливание области прокола и сбор образца из охлажденной конечности приведут к искажению результатов гемограммы. Образцы капиллярной крови должны быть стабилизированы калиевой солью ЭДТА, поэтому для взятия образца следует использовать капилляры, обработанные K3ЭДТА. Образцы могут храниться при комнатной температуре (23–24 °С) в течение 24 ч в штативе, в вертикальном положении, в удаленном от света месте.

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

Copyright ФБУН Центральный НИИ Эпидемиологии Роспотребнадзора, 1998 — 2019

Центральный офис: 111123, Россия, Москва, ул. Новогиреевская, д.3а, метро «Шоссе Энтузиастов», «Перово»
+7 (495) 788-000-1, info@cmd-online.ru

! Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, пользовательских данных (сведения о местоположении; тип и версия ОС; тип и версия Браузера; тип устройства и разрешение его экрана; источник откуда пришел на сайт пользователь; с какого сайта или по какой рекламе; язык ОС и Браузера; какие страницы открывает и на какие кнопки нажимает пользователь; ip-адрес) в целях функционирования сайта, проведения ретаргетинга и проведения статистических исследований и обзоров. Если вы не хотите, чтобы ваши данные обрабатывались, покиньте сайт.

источник

Показатели крови характеризуют состояние здоровья человека и могут значительно облегчить диагностику. Благодаря определению лейкоцитарной формулы можно предположить вид заболевания, судить о его протекании, наличии осложнений и даже спрогнозировать его исход. А понять происходящие в организме изменения поможет расшифровка лейкограммы.

Лейкоцитарная формула крови — это соотношение различных видов лейкоцитов, обычно выраженное в процентах. Исследование проводится в рамках общего анализа крови.

Лейкоцитами называют белые кровяные клетки, которые представляют систему иммунитета организма. Их главными функциями являются:

  • защита от микроорганизмов, способных вызывать проблемы со здоровьем;
  • участие в процессах, возникающих в организме при воздействии различных патогенных факторов и вызывающих нарушения нормальной жизнедеятельности (различные заболевания, воздействие вредных веществ, стрессы).

Выделяют следующие виды лейкоцитов:

  1. Эозинофилы. Проявляются при аллергических, паразитарных, инфекционных, аутоиммунных и онкологических заболеваниях.
  2. Нейтрофилы. Защищают от инфекций, способны разрушать вирусы и бактерии. Классифицируются на:
    • миелоциты (зарождающиеся) и метамиелоциты (юные — происходят от миелоцитов) — отсутствуют в крови здорового человека, образуются только в крайних случаях, при наиболее тяжёлых заболеваниях;
    • палочкодерные (молодые) — их количество увеличивается при бактериальных заболеваниях, если сегментоядерные нейтрофилы не справляются с инфекцией;
    • сегментоядерные (зрелые) — представлены в самом большом количестве, обеспечивают иммунную защиту организма в здоровом состоянии.
  3. Лимфоциты. Являются своеобразными чистильщиками: способны обнаруживать, распознавать и разрушать антигены, а также принимают участие в синтезе антител (соединений, способных стимулировать лимфоидные клетки, формируя и регулируя иммунный ответ организма), обеспечивают иммунную память.
  4. Моноциты. Их основная задача поглощать и переваривать погибшие (отмирающие или остатки разрушенных) клетки, бактерии и другие инородные частицы.
  5. Базофилы. Функции этих клеток полностью не изучены. Известно, что они принимают участие в аллергических реакциях, в процессах свёртываемости крови, активизируются при воспалениях.

Плазматические клетки (плазмоциты) участвуют в образовании антител и в норме присутствуют в очень низком количестве только в крови детей, у взрослых — отсутствуют и могут появиться только в случае патологий.

Исследование качественных и количественных характеристик лейкоцитов способно помочь при постановке диагноза, так как при любых изменениях в организме процентное содержание одних видов клеток крови увеличивается или уменьшается за счёт увеличения или уменьшения в той или иной степени других.

Врач назначает данный анализ для того, чтобы:

  • получить представление о тяжести состояния больного, судить о ходе заболевания или патологического процесса, узнать о наличии осложнений;
  • установить причину заболевания;
  • оценить эффективность назначенного лечения;
  • спрогнозировать исход заболевания;
  • в некоторых случаях — оценить клинический диагноз.

Для подсчёта лейкоцитарной формулы с мазком крови совершают определённые манипуляции, высушивают, обрабатывают специальными красителями и рассматривают под микроскопом. Лаборант отмечает те клетки крови, которые попадают в поле его зрения, и делает это до тех пор, пока в сумме не наберётся 100 (иногда 200) клеток.

Распределение лейкоцитов по поверхности мазка неравномерно: более тяжёлые (эозинофилы, базофилы и моноциты) располагаются ближе к краям, а более лёгкие (лимфоциты) — ближе к центру.

При подсчёте могут использоваться 2 способа:

  • Метод Шиллинга. Заключается в определении числа лейкоцитов в четырёх участках мазка.
  • Метод Филипченко. В этом случае мазок мысленно делят на 3 части и ведут подсчёт по прямой поперечной линии от одного края к другому.

На листе бумаги в соответствующих графах отмечается количество. После этого производится подсчёт каждого вида лейкоцитов — сколько каких клеток было найдено.

Следует иметь в виду, что подсчет клеток в мазке крови при определении лейкоцитарной формулы является весьма неточным методом, поскольку существует множество трудноустранимых факторов, вносящих погрешность: ошибки при взятии крови, приготовлении и окраске мазка, человеческая субъективность при интерпретации клеток. Особенность некоторых типов клеток (моноцитов, базофилов, эозинофилов) заключается в том, что в мазке они распределяются неравномерно.

При необходимости производится расчёт лейкоцитарных индексов, представляющих собой отношение содержащихся в крови пациента различных форм лейкоцитов, также иногда в формуле используется показатель СОЭ (скорость оседания эритроцитов).

Лейкоцитарные индексы показывают степень интоксикации и характеризуют состояние адаптационного потенциала организма – способности приспосабливаться к воздействию токсических факторов и справляться с ними. Они также позволяют:

  • получить информацию о состоянии больного;
  • оценить работу иммунной системы человека;
  • изучить сопротивляемость организма;
  • узнать уровень иммунологической реактивности (развитие организмом иммунологических реакций в ответ на воздействие паразитов или антигенных веществ) при поражении различных органов.
Возраст Эозинофилы, % Нейтрофилы
сегментоядерные, %
Нейтрофилы
палочкоядерные, %
Лимфоциты, % Моноциты, % Базофилы, %
Новорождённые 1–6 47–70 3–12 15–35 3–12 0–0,5
Младенцы до 2 недель 1–6 30–50 1–5 22–55 5–15 0–0,5
Груднички 1–5 16–45 1–5 45–70 4–10 0–0,5
1–2 года 1–7 28–48 1–5 37–60 3–10 0–0,5
2–5 лет 1–6 32–55 1–5 33–55 3–9 0–0,5
6–7 лет 1–5 38–58 1–5 30–50 3–9 0–0,5
8 лет 1–5 41–60 1–5 30–50 3–9 0–0,5
9–11 лет 1–5 43–60 1–5 30–46 3–9 0–0,5
12–15 лет 1–5 45–60 1–5 30–45 3–9 0–0,5
Люди старше 16 лет 1–5 50–70 1–3 20–40 3–9 0–0,5

Нормы лейкоцитарной формулы зависят от возраста человека. У женщин отличие также состоит в том, что показатели могут меняться в период овуляции, после или в период менструации, при беременности, после родов. Именно поэтому в случаях отклонений следует консультироваться у гинеколога.

Повышение или снижение уровня тех или иных видов лейкоцитов указывает на происходящие в организме патологические изменения.

Виды лейкоцитов Ниже нормы Выше нормы
Эозинофилы
  • Начальная фаза воспалительного процесса;
  • тяжелые гнойные инфекции;
  • стрессовые состояния;
  • травмы, ожоги, хирургические вмешательства;
  • развитие инфаркта миокарда (первые сутки);
  • интоксикация различными химическими соединениями, тяжелыми металлами.
  • Аллергическая сенсибилизация (повышение чувствительности) организма (бронхиальная астма, аллергический ринит, поллинозы, атопический дерматит, экзема, эозинофильный гранулематозный васкулит, пищевая аллергия);
  • лекарственная аллергия (часто на следующие препараты — Аспирин, Эуфиллин, Преднизолон, Карбамазепин, пенициллины, Левомицетин, сульфаниламиды, тетрациклины, противотуберкулезные средства);
  • заболевания кожи (экзема, герпетиформный дерматит);
  • паразитарные заболевания — глистные и протозойные инвазии (лямблиоз, эхинококкоз, аскаридоз, трихинеллез, стронгилоидоз, описторхоз, токсокароз и.т.д.);
  • острый период инфекционных заболеваний (скарлатина, ветряная оспа, туберкулез, инфекционный мононуклеоз, гонорея);
  • злокачественные опухоли (особенно метастазирующие и с некрозом);
  • пролиферативные (с разрастанием тканей) заболевания кроветворной системы (лимфогранулематоз, острый и хронический лейкоз, лимфома, полицитемия, миелопролиферативные заболевания, состояние после спленэктомии, гиперэозинофильный синдром);
  • воспалительные процессы соединительной ткани (узелковый периартериит, ревматоидный артрит, системная склеродермия);
  • заболевания легких — саркоидоз, легочная эозинофильная пневмония, гистиоцитоз из клеток Лангерганса, эозинофильный плеврит, легочный эозинофильный инфильтрат (болезнь Лефлера);
  • инфаркт миокарда (неблагоприятный признак)
Нейтрофилы
  • Некоторые инфекции, вызванные вирусами (грипп, корь, ветряная оспа, вирусный гепатит, краснуха), бактериями (брюшной тиф и паратифы, бруцеллез), простейшими (малярия), риккетсиями (сыпной тиф), затяжные инфекции у пожилых и ослабленных людей;
  • болезни системы крови (гипо- и апластические, мегалобластные и железодефицитные анемии, пароксизмальная ночная гемоглобинурия, острый лейкоз, гиперспленизм);
  • врожденные нейтропении (уменьшение числа нейтрофилов в крови);
  • анафилактический шок (очень тяжёлая и крайне быстро развивающаяся аллергическая реакция при повторном введении аллергена);
  • тиреотоксикоз (избыточное содержание гормонов щитовидной железы);
  • воздействие противоопухолевых препаратов;
  • лекарственные нейтропении (уменьшение числа нейтрофилов в крови), связанные с повышенной чувствительностью отдельных людей к действию некоторых лекарственных средств (нестероидных противовоспалительных средств, антиконвульсантов, антигистаминных препаратов, антибиотиков, противовирусных средств, психотропных средств, препаратов, воздействующих на сердечно-сосудистую систему, мочегонных, антидиабетических препаратов).
  • Инфекции, вызванные бактериями, грибами, простейшими, риккетсиями, некоторыми вирусами, спирохетами;
  • воспалительные процессы (ревматизм, ревматоидный артрит, панкреатит, дерматит, перитонит, тиреоидит);
  • состояние после оперативного вмешательства;
  • ишемический некроз тканей (инфаркты внутренних органов — миокарда, почек и.т.д.);
  • эндогенные интоксикации (сахарный диабет, уремия, эклампсия, некроз гепатоцитов);
  • физическое напряжение, стрессовые ситуации, эмоциональная нагрузка: воздействие жары, холода, боли, при ожогах и родах, при беременности, при страхе, гневе, радости;
  • онкологические заболевания (опухоли различных органов);
  • приём некоторых лекарственных препаратов, например, кортикостероидов, препаратов наперстянки, гепариновых, ацетилхолина;
  • отравление свинцом, ртутью, этиленгликолем, инсектицидами.
Лимфоциты
  • Острые инфекции и заболевания;
  • милиарный туберкулёз (заболевание, протекающее без заметной предварительной лимфогенной стадии, с образованием туберкулёзных бугорков в различных органах);
  • потеря лимфы через кишечник;
  • лимфогранулематоз (опухолевое заболевание лимфатической системы);
  • системная красная волчанка;
  • апластическая анемия (при которой развивается угнетение или прекращение роста и созревания всех ростков в костном мозге);
  • почечная недостаточность;
  • терминальная (пограничная) стадия онкологических заболеваний;
  • иммунодефициты (нарушения иммунитета с недостаточностью Т-клеток);
  • рентгенотерапия;
  • приём препаратов с цитостатическим (противовоопухолевым) действием (Хлорамбуцил, Аспарагиназа), глюкокортикоидов, введение антилимфоцитарной сыворотки.
  • Инфекционные заболевания: инфекционный мононуклеоз, вирусный гепатит, цитомегаловирусная инфекция, коклюш, ОРВИ, токсоплазмоз, герпес, краснуха, ВИЧ-инфекция;
  • заболевания системы крови: острый и хронический лимфолейкоз; лимфосаркома, болезнь тяжелых цепей — болезнь Франклина;
  • отравление тетрахлорэтаном, свинцом, мышьяком, дисульфидом углерода;
  • лечение такими препаратами, как Леводопа, Фенитоин, Вальпроевая кислота, наркотические анальгетики.
Моноциты
  • Апластическая анемия (поражение костного мозга);
  • волосатоклеточный лейкоз;
  • пиогенные (гноеродные) инфекции;
  • роды;
  • оперативные вмешательства;
  • шоковые состояния;
  • приём глюкокортикоидов.
  • Инфекции (вирусной, грибковой, протозойной и риккетсиозной природы), а также период выздоровления после острых инфекций;
  • гранулематозы (развитие гранулём в органах и тканях): туберкулёз, сифилис, бруцеллез, саркоидоз, язвенный колит (неспецифический);
  • системные коллагенозы — заболевания, характеризующиеся поражением соединительной ткани (системная красная волчанка), ревматоидный артрит, узелковый периартериит;
  • болезни крови (острый моноцитарный и миеломоноцитарный лейкоз, миелопролиферативные заболевания, миеломная болезнь, лимфогранулематоз);
  • отравление фосфором, тетрахлорэтаном.
Базофилы
  • Беременность;
  • период овуляции;
  • гипертиреоз;
  • прогрессирование инфекционных заболеваний;
  • острое воспаление лёгких;
  • усиление функции щитовидной железы;
  • развитие синдрома Иценко-Кушинга (нейроэндокринное заболевание, характеризующееся повышенной продукцией гормонов коры надпочечников);
  • приём препаратов из группы кортикостероидных;
  • патологии в костном мозге.
  • Хронический миелолейкоз — опухолевое заболевание крови (эозинофильно-базофильная ассоциация);
  • микседема — заболевание, обусловленное недостаточным обеспечением органов и тканей гормонами щитовидной железы (гипотиреоз);
  • ветряная оспа;
  • гиперчувствительность к пищевым продуктам или лекарственным средствам;
  • реакция на введение чужеродного белка;
  • нефроз — заболевание почек, сопровождающееся нарушением белково-липидного и водно — солевого обмена;
  • хронические гемолитические анемии;
  • состояние после спленэктомии (операция по удалению селезёнки);
  • болезнь Ходжкина (злокачественная опухоль, которая развивается из лимфоидной ткани);
  • лечение эстрогенами, антитиреоидными препаратами;
  • язвенный колит.

В медицине существуют понятия сдвига лейкоцитарной формулы, свидетельствующие об отклонених в состоянии здоровья пациентов.

Сдвиг влево Сдвиг вправо
Изменения в формуле крови
  • Увеличивается количество палочкоядерных нейтрофилов;
  • возможно появление молодых форм — метамиелоцитов, миелоцитов.
  • Увеличивается процентное содержание сегментоядерных и полисегментоядерных форм;
  • появляются гиперсегментированные гранулоциты.
На какие проблемы со здоровьем указывает
  • Острые воспалительные процессы;
  • гнойные инфекции;
  • интоксикация (отравление токсическими веществами) организма;
  • острая геморрагия (кровотечение при разрывах сосудов);
  • ацидоз (нарушение кислотно-щелочного баланса со смещением в сторону кислоты) и коматозное состояние;
  • физическое перенапряжение.
  • Мегалобластная анемия;
  • болезни почек и печени;
  • состояние после переливания крови.

Для получения данных о состоянии больного, опираясь на результаты лейкоцитарной формулы, учитывают индекс сдвига. Его определяют по формуле: ИС = М (миелоциты) + ММ (метамиелоциты) + П (палочкоядерные нейтрофилы)/С (сегментоядерные нейтрофилы). Норма индекса сдвига лейкоцитарной формулы у взрослого человека — 0,06.

В некоторых случаях может отмечаться такое явление, как значительное содержание в крови молодых клеток — метамиелоцитов, миелоцитов, промиелоцитов, миелобластов, эритробластов. Это обычно указывает на заболевания опухолевой природы, онкологию и метастазирование (образование вторичных очагов опухоли).

Перекрёст лейкоцитарной формулы — это понятие, возникающее при анализировании крови ребёнка. Если у взрослого человека изменения в крови обусловлены заболеваниями или значительным воздействием на организм вредных факторов, то у маленьких детей изменения возникают в связи с формированием иммунной системы. Данное явление не является патологией, а считается абсолютно нормальным. Нестандартность цифр обуславливается только становлением иммунитета.

Первый перекрёст лейкоцитарной формулы обычно возникает к концу первой недели жизни младенца. В это время количество нейтрофилов и лимфоцитов в крови уравнивается (их становится примерно по 45%), после чего число лимфоцитов продолжает расти, а нейтрофилов — уменьшаться. Это считается нормальным физиологическим процессом.

Второй перекрёст лейкоцитарной формулы возникает в 5–6 лет и только к десяти годам показатели крови приближаются к норме взрослого человека.

По данным ряда медицинских авторов, в настоящее время у детей отмечается более ранний перекрест в лейкоцитарной формуле, склонность к эозинофилии, относительной нейтропении и увеличению числа лимфоцитов.

Лейкоцитарная формула способна дать многие ответы при затруднениях в диагностике заболевания и назначении терапии, а также охарактеризовать состояние пациента. Однако расшифровку анализа крови лучше доверить опытному специалисту. Врач может дать подробные объяснения и скорректировать проводимое лечение.

источник

Общий клинический анализ крови – это самый распространенный диагностический тест, который назначает пациенту врач. За последние десятилетия технология этого рутинного, но очень информативного исследования проделала колоссальный рывок – она стала автоматической. В помощь врачу лабораторной диагностики, орудием труда которого был обычный световой микроскоп, пришли высокотехнологичные автоматические гематологические анализаторы.

Читайте также:  Нет крови при взятии анализа

В этом посте мы расскажем, что именно происходит внутри «умной машины», видящей нашу кровь насквозь, и почему ей следует верить. Мы будем рассматривать физику процессов на примере гематологического анализатора UniCel DxH800 мирового бренда Beckman Coulter. Именно на этом оборудовании выполняются исследования, заказанные в сервисе лабораторной диагностики LAB4U.RU. Но для того, чтобы понять технологию автоматического анализа крови, мы разберемся с тем, что видели врачи-лаборанты под микроскопом и как они интерпретировали эту информацию.

Итак, в крови содержится три вида клеток:

  • лейкоциты, обеспечивающие иммунную защиту;
  • тромбоциты, отвечающие за свертываемость крови;
  • эритроциты, осуществляющие транспорт кислорода и углекислого газа.

Эти клетки находятся в крови в совершенно определенных количествах. Их обуславливают возраст человека и состояние его здоровья. В зависимости от условий, в которых находится организм, костный мозг производит столько клеток, сколько их требуется организму. Поэтому, зная количество определенного вида клеток крови и их форму, размер и другие качественные характеристики, можно уверенно судить о состоянии и текущих потребностях организма. Именно эти ключевые параметры – количество клеток каждого вида, их внешний вид и качественные характеристики – составляют общий клинический анализ крови.

При проведении общего анализа крови производят подсчет количества эритроцитов, тромбоцитов и лейкоцитов. С лейкоцитами сложнее: их несколько видов, и каждый вид выполняет свою функцию. Выделяют 5 разных видов лейкоцитов:

  1. нейтрофилы, нейтрализующие в основном бактерии;
  2. эозинофилы, нейтрализующие иммунные комплексы антиген-антитело;
  3. базофилы, участвующие в аллергических реакциях;
  4. моноциты – главные макрофаги и утилизаторы;
  5. лимфоциты, обеспечивающие общий и местный иммунитет.

В свою очередь, нейтрофилы по степени зрелости разделяют на:

  • палочкоядерные,
  • сегментоядерные,
  • миелоциты,
  • метамиелоциты.

Процент каждого вида лейкоцитов в их общем объеме называют лейкоцитарной формулой, которая имеет важное диагностическое значение. Например, чем более выражен бактериальный воспалительный процесс, тем больше нейтрофилов в лейкоцитарной формуле. Наличие нейтрофилов разной степени зрелости говорит о тяжести бактериальной инфекции. Чем острее процесс, тем больше в крови палочкоядерных нейтрофилов. Появление в крови метамиелоцитов и миелоцитов говорит о крайне тяжелой бактериальной инфекции. Для вирусных заболеваний характерно увеличение лимфоцитов, при аллергических реакциях – увеличение эозинофиллов.

Помимо количественных показателей, крайне важна морфология клеток. Изменение их обычной формы и размеров также свидетельствует о наличии определенных патологических процессов в организме.

Важный и наиболее известный показатель – количество в крови гемоглобина – сложного белка, обеспечивающего поступление кислорода к тканям и выведение углекислого газа. Концентрация гемоглобина в крови – главный показатель при диагностике анемий.

Еще один из важных параметров – это скорость оседания эритроцитов (СОЭ). При воспалительных процессах у эритроцитов появляется свойство слипаться друг с другом, образуя небольшие сгустки. Обладая большей массой, слипшиеся эритроциты под действием силы тяжести оседают быстрее, чем одиночные клетки. Изменение скорости их оседания в мм/ч является простым индикатором воспалительных процессов в организме.

Вспомним, как раньше сдавали кровь: болезненный прокол подушечки скарификатором, бесконечные стеклянные трубочки, в которые собирали драгоценные капли выжатой крови. Как лаборант одним стёклышком проводил по другому, где находилась капля крови, царапая на стекле номер простым карандашом. И бесконечные пробирки с разными жидкостями. Сейчас это уже кажется какой-то алхимией.

Кровь брали именно из безымянного пальца, на что были вполне серьезные причины: анатомия этого пальца такова, что его травмирование дает минимальную угрозу сепсиса в случае инфицирования ранки. Забор крови из вены считался куда более опасным. Поэтому анализ венозной крови не был рутинным, а назначался по необходимости, и в основном в стационарах.

Стоит отметить, что уже на этапе забора начинались значительные погрешности. Например, разная толщина кожи дает разную глубину укола, вместе с кровью в пробирку попадала тканевая жидкость – отсюда изменение концентрации крови, кроме того, при давлении на палец клетки крови могли разрушаться.

Помните ряд пробирок, куда помещали собранную из пальца кровь? Для подсчета разных клеток действительно нужны были разные пробирки. Для эритроцитов – с физраствором, для лейкоцитов – с раствором уксусной кислоты, где эритроциты растворялись, для определения гемоглобина – с раствором соляной кислоты. Отдельный капилляр был для определения СОЭ. И на последнем этапе делался мазок на стекле для последующего подсчета лейкоцитарной формулы.

Для подсчета клеток под микроскопом в лабораторной практике использовался специальный оптический прибор, предложенный еще в ХIX веке русским врачом, именем которого этот прибор и был назван – камера Горяева. Она позволяла определить количество клеток в заданном микрообъеме жидкости и представляла собой толстое предметное стекло с прямоугольным углублением (камерой). На нее была нанесена микроскопическая сетка. Сверху камера Горяева накрывалась тонким покровным стеклом.

Эта сетка состояла из 225 больших квадратов, 25 из которых были разделены на 16 малых квадратов. Эритроциты считались в маленьких исчерченных квадратах, расположенных по диагонали камеры Горяева. Причем существовало определенное правило подсчета клеток, которые лежат на границе квадрата. Расчет числа эритроцитов в литре крови осуществлялся по формуле, исходя из разведения крови и количества квадратов в сетке. После математических сокращений достаточно было посчитанное количество клеток в камере умножить на 10 в 12-й степени и внести в бланк анализа.

Лейкоциты считали здесь же, но использовали уже большие квадраты сетки, поскольку лейкоциты в тысячу раз больше, чем эритроциты. После подсчета лейкоцитов их количество умножали на 10 в 9-й степени и вносили в бланк. У опытного лаборанта подсчет клеток занимал в среднем 3-5 мин.

Методы подсчета тромбоцитов в камере Горяева были очень трудоемки из-за малой величины этого вида клеток. Оценивать их количество приходилось только на основе окрашенного мазка крови, и сам процесс был тоже весьма трудоемким. Поэтому, как правило, количество тромбоцитов рассчитывали только по специальному запросу врача.

Лейкоцитарную формулу, то есть процентный состав лейкоцитов каждого вида в общем их количестве мог определять только врач – по результатам изучения мазков крови на стеклах.

Визуально определяя находящиеся в поле зрения различные виды лейкоцитов по форме их ядра, врач считал клетки каждого вида и общее их количество. Насчитав 100 в совокупности, он получал требуемое процентное соотношение каждого вида клеток. Для упрощения подсчета использовались специальные счетчики с отдельными клавишами для каждого вида клеток.

Примечательно, что такой важный параметр, как гемоглобин, определялся лаборантом визуально (!) по цвету гемолизированной крови в пробирке с соляной кислотой. Метод был основан на превращении гемоглобина в солянокислый гематин коричневого цвета, интенсивность окраски которого пропорциональна содержанию гемоглобина. Полученный раствор солянокислого гематина разводили водой до цвета стандарта, соответствующего известной концентрации гемоглобина. В общем, прошлый век

Начнем с того, что сейчас полностью поменялась технология забора крови. На смену скарификаторам и стеклянным капиллярам с пробирками пришли вакуумные контейнеры. Использующиеся теперь системы забора крови малотравматичны, процесс полностью унифицирован, что значительно сократило процент погрешностей на этом этапе. Вакуумные пробирки, содержащие консерванты и антикоагулянты, позволяют сохранять и транспортировать кровь от точки забора до лаборатории. Именно благодаря появлению новой технологии стало возможным сдавать анализы максимально удобно – в любое время, в любом месте.

На первый взгляд, автоматизировать такой сложный процесс, как идентификация клеток крови и их подсчет, кажется невозможно. Но, как обычно, все гениальное просто. В основе автоматического анализа крови лежат фундаментальные физические законы. Технология автоматического подсчета клеток была запатентована в далеком 1953 году американцами Джозефом и Уолессом Культерами. Именно их имя стоит в название мирового бренда гематологического оборудования Bеckman&Coulter.

Апертурно-импедансный метод (метод Культера или кондуктометрический метод) основан на подсчете количества и оценке характера импульсов, возникающих при прохождении клетки через отверстие малого диаметра (апертуру), по обе стороны которого расположены два электрода. При прохождении клетки через канал, заполненный электролитом, возрастает сопротивление электрическому току. Каждое прохождение клетки сопровождается появлением электрического импульса. Чтобы выяснить, какова концентрация клеток, необходимо пропустить через канал определенный объем пробы и сосчитать количество появившихся импульсов. Единственное ограничение – концентрация пробы должна обеспечивать прохождение через апертуру только одной клетки в каждый момент времени.

За прошедшие более 60 лет технология автоматического гематологического анализа прошла большой путь. Вначале это были простые счетчики клеток, определяющие 8-10 параметров: количество эритроцитов (RBC), количество лейкоцитов (WBC), гемоглобин (Hb) и несколько расчетных. Такими были анализаторы первого класса.

Второй класс анализаторов определял уже до 20 различных параметров крови. Они существенно выше по уровню в дифференциации лейкоцитов и способны выделять популяции гранулоцитов (эозинофилы + нейтрофилы + базофилы), лимфоцитов и интегральной популяции средних клеток, куда относились моноциты, эозинофилы, базофилы и плазматические клетки. Такая дифференциация лейкоцитов успешно использовалась при обследовании практически здоровых людей.

Самыми технологичными и инновационными анализаторами на сегодняшний день являются машины третьего класса, определяющие до сотни различных параметров, проводящие развернутое дифференцирование клеток, в том числе по степени зрелости, анализирующие их морфологию и сигнализирующие врачу-лаборанту об обнаружении патологии. Машины третьего класса, как правило, снабжены еще и автоматическими системами приготовления мазков (включая их окраску) и вывода изображения на экран монитора. К таким передовым гематологическим системам относятся оборудование BeckmanCoulter, в частности система клеточного анализа UniCel DxH 800.

Современные аппараты BeckmanCoulter используют метод многопараметрической проточной цитометрии на основе запатентованной технологии VCS (Volume-Conductivity-Scatter). VCS-технология подразумевает оценку объема клетки, ее электропроводимость и светорассеяние.

Первый параметр – объем клетки – измеряется с использованием принципа Культера на основе оценки сопротивления при прохождении клеткой апертуры при постоянном токе. Величину и плотность клеточного ядра, а также ее внутренний состав определяют с помощью измерения ее электропроводности в переменном токе высокой частоты. Рассеяние лазерного света под разными углами позволяет получить информацию о структуре клеточной поверхности, гранулярности цитоплазмы и морфологии ядра клетки.

Полученные по трем каналам данные комбинируются и анализируются. В результате клетки распределяются по кластерам, включая разделение по степени зрелости эритроцитов и лейкоцитов (нейтрофилов). На основе полученных измерений этих трех размерностей определяется множество гематологических параметров – до 30 в диагностических целях, более 20 в исследовательских целях и более ста специфичных расчетных параметров для узкоспециализированных цитологических исследований. Данные визуализируются в 2D- и 3D-форматах. Врач-лаборант, работающий с гематологическим анализатором BackmanCoulter, видит результаты анализа на мониторе примерно в таком виде:

А далее принимает решение – надо ли их верифицировать или нет.

Стоит ли говорить, что информативность и точность современного автоматического анализа во много раз выше мануального? Производительность машин подобного класса – порядка сотни образцов в час при анализе тысяч клеток в образце. Вспомним, что при микроскопии мазка врачом анализировалось только 100 клеток!

Однако несмотря на эти впечатляющие результаты, именно микроскопия до сих пор пока остается «золотым стандартом» диагностики. В частности, при выявлении аппаратом патологической морфологии клеток образец анализируется под микроскопом вручную. При обследовании больных с гематологическими заболеваниями микроскопия окрашенного мазка крови проводится только вручную опытным врачом-гематологом. Именно так, вручную, дополнительно к автоматическому подсчету клеток, выполняется оценка лейкоцитарной формулы во всех детских анализах крови по заказам, сделанным с помощью лабораторного онлайн-сервиса LAB4U.RU.

Технологии автоматизированного гематологического анализа продолжают активно развиваться. По существу они уже заменили микроскопию при выполнении рутинных профилактических анализов, оставив ее для особо значимых ситуаций. Мы имеем в виду детские анализы, анализы людей, имеющих подтвержденные заболевания, особенно гематологические. Однако в обозримом будущем и на этом участке лабораторной диагностики врачи получат аппараты, способные самостоятельно выполнять морфологический анализ клеток с использованием нейронных сетей. Снизив нагрузку на врачей, они в то же время повысят требования к их квалификации, поскольку в зоне принятия решений человеком останутся только нетипичные и патологические состояния клеток.

Количество информативных параметров анализа крови, увеличившиеся многократно, поднимает требования к профессиональной квалификации и врача-клинициста, которому необходимо анализировать сочетания значений массы параметров в диагностических целях. На помощь врачам этого фронта идут экспертные системы, которые, используя данные анализатора, предоставляют рекомендации по дальнейшему обследованию пациента и выдают возможный диагноз. Такие системы уже представлены на лабораторном рынке. Но это уже тема отдельной статьи.

источник

кровь нужно сдавать из пальца и подсчитывать лейкоформулу вручную.с анализаторами одни проблемы.
Я, извините, вас немного перефразирую
«Надо считать на счетах с костяшками, или в уме. А то с компьютерами одни проблемы»
В хорошей лаборатории с анализаторами проблем нет. Я гарантирую это (c) 🙂

И, кстати, счет клеток вручную никто и не отменяет. Только это следует делать тогда, когда есть для того необходимость.

Анализ крови нужно сдавать из вены и считать автоматическим анализатором. При необходимости — пересмотр мазка врачом-лаборантом. В каких?

Evaluation of the peripheral blood smear

Author
David S Rosenthal, MD Section Editor
Stanley L Schrier, MD Deputy Editor
Stephen A Landaw, MD, PhD

Review of the peripheral smear is not required in all patients with a hematological disorder. Certain straightforward conditions such as iron deficiency anemia can be easily diagnosed on the basis of clinical information and basic laboratory data (eg, mean corpuscular volume, serum iron, ferritin) alone. However, there are a number of settings in which interpretation of the peripheral smear is especially important. Three examples include: Hemolytic anemia, since careful review of red cell morphology may identify the pathophysiologic basis of erythrocyte destruction (eg, the presence of bite cells points to a Heinz body hemolytic anemia) and the ultimate diagnosis (eg, oxidant damage to the red cell secondary to drugs) Thrombocytopenia, where it is critical to distinguish between increased platelet consumption (eg, TTP-HUS, DIC, ITP) and reduced platelet production (eg, aplastic anemia). White cell disorders, in which the precise classification of the disease may rely upon evaluation of abnormal circulating cells (eg, the presence of Auer rods in a blast form in patients with acute myeloid leukemia).

Ого сколько я пропустил то 🙂
Уважаемый patologist. Я являюсь специалистом по лабораторной автоматизации. В профайле в «области интересов» у меня так и написано.

Я хочу сказать, что нужно четко себе представлять, что может анализатор, а чего он не может. Увы, в России часто в погоне за экономией покупают, например, геманализаторы 3diff и хотят от него полноценного счета клеток. Так это, что называется «за копейку канарейку, чтоб не ела, а только пела». Есть вообще то и 5diff анализаторы. Они, понятное дело, дороже, но именно они то и нужны в реальной жизни.
Потом, у нас есть практика купить технику из Поднебесной, а потом удивляться чего й то она больше полугода не работает.

Читайте также:  Общий анализ крови палец завтракать

Короче говоря, анализатор — это есть инструмент, который должен ДОПОЛНЯТЬ голову специалиста, а вовсе не ЗАМЕНЯТЬ ее.
Глупо, оттяпав себе палец топором, говорить, что топор негодная и ненужная вещь. Учитесь им пользоваться.

Artifactual thrombocytopenia, or falsely low platelet counts, occurs ex vivo when platelets are not counted accurately. This mechanism should be considered in patients who have thrombocytopenia but no petechiae or ecchymoses. Although inaccurate counting may occur in the presence of giant platelets (2) or with platelet satellitism (3), the most common cause of artifactual thrombocytopenia is platelet clumping (pseudothrombocytopenia) (4). Platelet clumping in pseudothrombocytopenia appears to be caused by anticoagulant-dependent platelet agglutinins that are immunoglobulins (Igs) of IgG, IgA, or IgM subtypes. Although clumping is most commonly seen when blood is collected into ethylenediaminetetraacetic acid anticoagulant, other anticoagulants may cause clumping, even hirudin or Phe-Pro-Arg chloromethyl ketone (5). Platelet clumping is also time dependent and varies with the type of instrumentation used for automatic counting (5). There is evidence that the autoantibodies bind to glycoprotein IIb/IIIa (6), and in one study, there was over 80% concordance between the presence of anticardiolipin antibody and platelet agglutinins in individual patient plasmas (7). These autoantibodies have no known associations with disease or drugs and have been noted in some patients for over 10 years (8).

Wintrobe’s Clinical Hematology
12th Edition 2009
Chapter 50
Thrombocytopenia: Pathophysiology and Classification
George M. Rodgers

Коллеги! Что есть вот это:
platelet satellitism

Мне интересно, что это такое и каков правильный русский перевод названия этого явления.

Юсиф Мусаевич, насколько я понял, мы имеем такую ситуацию, что к результату из лаборатории хочется приписать в конце нолик и тогда он будет похож на правду.

В общем то, Abbott весьма приличный производитель и проблемой конструкции анализатора это быть не может. Может быть, например, проблемой пробоподготовки. В пробирке, в которую берут кровь есть антикоагулянт. И сразу после взятия крови эту пробирку надо несколько раз перевернуть, иначе будут микросгустки. (Жгутом еще могли перетянуть слишком руку, когда кровь брали или вену долго искали, ковыряясь иглой). Для анализатора ведь эти сгустки «невидимы», а тромбоциты на них «потратились». Потом, тромбоциты очень охотно разрушаются и если образец постоял слишком много времени.

Может быть и плохое качество реактивов, но это как правило заметно сразу в лаборатории, т.к. «корявые» результаты получаются во всех образцах подряд.
Больше похоже, конечно на образование сгустков в пробирке по какой-то причине.

Как правило приходится раскручивать каждый подобный случай для того, чтоб реальную причину выявить. Резкое занижение тромбоцитов при исследовании в анализаторах — типичная проблема.

Продолжение сегодня.
Тромбоциты — аппаратно 18-20тыс, подсчет в мазке — 50тыс., MPV(средний объем тромбоцитов) 12.0 при границах 6.5-11.0
Антитела к кардиолипину IgM 18.0(pozitiv>12), IgG 49(pozitiv>12).

Таким образом, причина заниженных ответов на анализаторе прояснилась. Еще раз спасибо за помощь.
Но теперь остается вопрос,- а почему тромбоцитопения все-таки?
И тут у меня мозги уже закипают.

Но теперь остается вопрос,- а почему тромбоцитопения все-таки?
Подозреваю, что это лабораторная манифестация вторичного АФС на фоне гепатита С. Если клиники нет, я бы сделал ВА, повторил АКЛ через 8-12 недель и при сохранении АКЛ на примерно таком уровне думал бы о возможности профилактики (микро)тромбозов.

А криоглобулины есть возможность посмотреть?

это говорит о том,что у гем.анализаторов проблемы с дифференцировкой клеток и не стоит доверять распечаткам на 100%.мазок из венозной крови изучать проблематично,потому что клетки деформируются на преаналитическом этапе и приходится повторно брать кровь из пальца.зачем же мучить пациента и врача КЛД. кровь на ОАК нужно брать только из пальца.это мнение не только моё,а всех врачей КЛД.

Наконец-то еще одно грамотное мнение по этому поводу, что бы не говорили и не цитировали!
А в пользу крови из вены для ОАКр есть один весомый довод — так быстрее или удобней или «А мы хотим так»! Давайте будем честны, ув. врачи КДЛ, ну не дифференцирует анализатор клетки крови так как надо, особенно при патологии!

кровь для анализа берём в пробирки, опылённые сухим трилоном.
Это в смысле сразу в вакутейнейр или сначала в шприц, затем переливаете.

Хотя, наверное, это менее важно, чем ЭДТА-индуцированное «слипание» тромбоцитов и ЭДТА-индуцированный «отек» тромбоцитов, которые, вероятно, и являются причиной псевдотромбоцитопении.

нет-нет, мы берём кровь из пальца,пробирку обязательно встряхиваем, так как в случае образования сгустка будет невозможно провести анализ, да и большой риск угробить анализатор.
Это 4,5-5 мл из пальца? Насасывая в стеклянный капилляр, на котором активируются тромбоциты? Зело сильны.

объём всегда набираю больше нормы, чтобы при случае можно было повтор анализа сделать.
Ага, а потом на анализатор пенять, что считает неправильно. С преаналитики все начинается, как театр с вешалки.

Это 4,5-5 мл из пальца? Насасывая в стеклянный капилляр, на котором активируются тромбоциты? Зело сильны.

но предварительно, промываем в цитрате.

Ага, а потом на анализатор пенять, что считает неправильно. С преаналитики все начинается, как театр с вешалки.

я же не говорю, что он всё считает неправильно, гемоглобин, эритроциты и лейкоциты он считает точно(сравнивали с ручными методами, практически один к одному)

Ну да ну да KX. Пятница вечер и голова работает с трудом. Мог бы и сам догадаться по капиллярную кровь.

А почему капиллярную то кровь берете? Педиатрия?
3 diff анализатор и капиллярная кровь. Более геморного решения по моему сыскать трудно. Не тромбоциты уедут, так формула наврет. Требуется просто идеальная преаналитика, а следовательно постоянное внимание. Иначе все это просто не работает.

почему берём капиллярную кровь, честно сказать, не знаю, детского отделения в больнице нет, к педиатрии отношения не имеем. безусловно с венозной кровью попроще.

у меня вопрос: а что такое 3diff?

Ну раз уж начал говорить, то мысль закончу. Аппаратуры сейчас выпускается много. И она становится все более специализированной и создается под конкретные задачи. И использовать ее не под те задачи, под которые она производителем заточена — это наживать себе проблемы на пустом месте.

Вот и для вашего анализатора есть своя определенная ниша. Ему место в экспресс лаборатории, например в приемном отделении. Привезли пациента с острым животом, и помимо всего прочего, сразу ему кровушку взяли, в соседнюю комнату отнесли и анализ сделали — сразу можно прикинуть что и как. У хирурга есть нужная ему информация.

А если это лаборатория и рутинные клинические анализы крови, так там другой совсем анализатор-то нужен.

3 diff — это значит, что анализатор может делить лейкоциты на 3 популяции: гранулоциты, лимфоциты, моноциты (ну или в случае вашего, то нейтрофилы, лимфоциты и все прочее). Полноценной формулы (нейтрофилы, базо, эоз, лимф, моно — 5 diff) он по определению не считает.

И еще насчет венозной крови. Дело тут вовсе не в том, что проще. Для рутинных анализов нужно использовать только венозную кровь. Это должно быть правилом. Капиллярная кровь (при рутинном тестировании), только для спец задач, когда венозную взять затруднительно.

Немного по теме. Когда мы исследовали случаи тромбоцитопении на фоне применения блокаторов ГП 2B/3A, то заметили, что 70% из них оказались ложными, вследствии неправильного автоматического подсчета. Возможная причина этому факту, что тромбоциты склеивались в конгломераты и не были учтены при анализе. К сожалению за скобками осталась функциональная оценка этих слипшихся тромбоцитов. Может у кого-нибудь из коллег есть мысли на этот счет?

Случайно, не при использовании РеоПро? Вот такой фрагмент о причинах и попытках предотвращения:

Prior studies of pseudothrombocytopenia (PTCP)
Previous reports have documented the occurrence of PTCP in up to 0.2% of the healthy population and in 1.9% of hospitalized patients [12, 13 and 14]. Although PTCP is an infrequent condition, it accounts for a sizable fraction (7.5 to 15.3%) of all cases of “thrombocytopenia” that are referred to hematologists for further evaluation [15]. The phenomenon of PTCP that occurs in the absence of abciximab therapy is due to platelet autoantibodies that recognize usually cryptic platelet antigens that are exposed in vitro. The presence of certain anticoagulants (especially EDTA), low temperatures and prolonged time intervals between blood draws and assays are factors that enhance the occurrence of PTCP [16, 17, 18 and 19]. The autoantibodies are usually IgG or IgM with the most commonly reported antigenic target being platelet glycoprotein IIb [16] although other antigens including phospholipids have been described [18]. Ethylene diamine tetra acetic acid is the most commonly reported anticoagulant to induce PTCP. The calcium chelating activity of EDTA is thought to remove calcium from binding sites within Gp IIb or Gp IIIa, resulting in exposure or conformational alteration of the molecule(s), thereby allowing the previously cryptic antigen to interact with the autoantibody [17]. As a result of the frequent association with EDTA anticoagulant a commonly recommended method to screen for this phenomenon and the method most commonly used in the studies in this report is to obtain simultaneous platelet counts in EDTA and sodium citrate anticoagulants. However, the term “EDTA-dependent PTCP” has been rejected by some investigators, since PTCP has been observed in citrate anticoagulants and even in nonchelating anticoagulants such as hirudin and D-phenylalanine-proline-arginine-chloromethyl ketone [19]. Bizzaro et al. [17] noted that in 15 of their 93 cases (10.8%) with PTCP and antiplatelet antibodies, agglutination occurred in citrate at room temperature [17]. In this study, 14 of the 117 cases of PTCP that occurred during abciximab therapy were documented to occur in the presence of citrate anticoagulant.

Since the autoantibodies that induce PTCP often are most active in a time-dependent fashion at 4 to 20° C, it has been suggested that the most reliable way to obtain accurate platelet counts is to perform platelet counts on blood at 37° C [17]. However, even this method will cause a few cases to be mislabeled since approximately 17% of autoantibodies are reactive at 37°C in the presence of anticoagulants [17]. The autoantibodies that are reactive at 37°C and in citrate are more likely to be of the IgM class [17]. The gold standard for differentiating PTCP from thrombocytopenia may, therefore, be to perform a platelet count on nonanticoagulated blood obtained by finger stick, in which case a normal platelet count should be obtained. In contrast, a blood smear prepared from EDTA-anticoagulated blood typically reveals platelet clumping.

The source of the autoantibodies that are thought to cause PTCP is unknown. Sakurai et al. [20] reported that a group of patients who developed PTCP during hospitalization had been treated with antibiotics 4 to 10 days before the onset of this condition. They hypothesized that the autoantibodies first arose to antibiotics then cross-reacted to platelet membranes. They demonstrated that presupplementation of EDTA tubes with aminoglycosides prevented PTCP and that aminoglycosides added after the onset of platelet clumping could dissociate the aggregates [20]. However, there was no apparent correlation between the antibiotic that the patient had taken therapeutically and the antibiotic that was most effective in inhibiting platelet clumping, casting doubt on the theory that antiplatelet antibodies arise from cross-reacting antibodies to these drugs. Another theory for the origin of the autoantibodies directed to platelets is that they are involved in removing senescent circulating platelets [17].

Potential mechanisms for abciximab-induced PTCP
The etiology of the increased prevalence of PTCP in abciximab-treated patients is also obscure. Christopoulos and Machin [10] performed flow cytometric analysis of platelet surface IgG in platelets from two patients with abciximab-induced PTCP and demonstrated a time- and room temperature-dependent increase in surface IgG, which was not present on EDTA samples taken before the infusion of c7E3 or in citrate anticoagulated samples taken during the infusion [10]. Among 19 patients receiving c7E3-Fab, the one with the most severe PTCP also had the most surface IgG [10]. This finding led Christopoulos and Machin to propose that there might be naturally occurring anti-Fab antibodies and that these might bridge platelets to form agglutination. Another possibility is that the binding of the Fab fragment to the beta3 component of the fibrinogen receptor could alter the conformation of the molecule and, in concert with the anticoagulant-induced changes, enhance access of autoantibodies to Gp IIb or other platelet antigens. Abciximab is known to induce the expression of conformational changes in the fibrinogen receptor, as detected by the expression of novel antigens (ligand induced binding sites [LIBS]) [21 and 22]. The potential for abciximab-induced conformational changes in the fibrinogen receptor and the ability of some platelet autoantibodies to react at 37° C also raises the possibility that the mechanisms for PTCP and thrombocytopenia during abciximab therapy could be related. Thus, it is possible that abciximab alone, in the absence of anticoagulants, is adequate to expose the cryptic epitope for warm-reacting platelet autoantibodies, leading to the immune-mediated clearance of platelets and thrombocytopenia. This hypothesis is consistent with the observation that the induction of LIBS epitopes on platelets after abciximab therapy is inversely correlated with the platelet count [21]. This possibility is also attractive because of the relative high frequency of PTCP as a cause of low platelet counts with abciximab therapy and by the fact that the mechanism for abciximab-induced thrombocytopenia remains unknown.

Am Coll Cardiol. 2000 Jul;36(1):75-83.
Occurrence and clinical significance of pseudothrombocytopenia during abciximab therapy.

благодарю за подробнейший ответ.
кстати, недавно заведующая говорила, что собираются для лаборатории приобретать ещё один анализатор, правда ещё не знаю какая марка, когда приобретут, обязательно отпишусь

источник